大厅内气氛凝重,十五名优秀选手坐在考场前排,目光炯炯有神。
教授们一字排开,俨然一副要掀翻天的架势。
黄国栋心中暗喜,嘴角勾起一抹自信的微笑。
他环顾四周,心中暗暗想着。
"哼,这些教授肯定会先考我。"
"从头到尾,我的能力可是很优秀的,众人都是看在眼里的。"
“最多,会被周群和林诗雨分走一些关注。”
“但是,自己肯定受到的提问和关注也不会少的。”
然而,只是他的一厢情愿罢了。
清华大学的秦教授突然开口,第一个问题直接问的周群。
"周群同学,请你证明:对于任意正整数n,表达式n4+4n永远不可能是完全平方数。"
这道题如同一记重拳,直接击碎了黄国栋的美梦。他不可置信地瞪大眼睛,嘴巴微张,活像一条脱水的鱼。
周围响起一片倒吸凉气的声音。这题目的难度,简直是要人命!
然而,周群却面不改色,眼中闪过一丝兴奋的光芒。他站起身,声音沉稳有力:"谢谢秦教授,我有以下思路"
谢谢秦教授,我的证明思路如下:
首先,我们可以注意到,当n为奇数时,n4是奇数,4n是偶数,它们的和必然是奇数,而奇数不可能是完全平方数。所以我们只需考虑n为偶数的情况。
当n为偶数时,我们可以将表达式写成:n4+4n=(n2-2n)(n2+2n)+ 2·4n
接下来,我们证明(n2-2n)(n2+2n)和2·4n的差永远是2。
设 f(n)=(n2-2n)(n2+2n)+ 2- 2·4n
我们可以通过数学归纳法证明f(n)= 0对所有偶数n成立。
因此,n4+4n可以表示为(n2-2n)(n2+2n)+ 2。
假设n4+4n是完全平方数,那么它减去2应该也是完全平方数。但是,(n2-2n)(n2+2n)是两个因子的乘积,除非这两个因子相等,否则它不可能是完全平方数。
然而,n2-2n< n2< n2+2n,所以这两个因子永远不可能相等。
因此,我们证明了对于任意正整数n,n4+4n永远不可能是完全平方数。"
周群的解答如行云流水,逻辑严密,步步为营。教授们听得连连点头,眼中闪烁着惊喜的光芒。
秦教授点了点头,略带点激动的说:"精彩!周群同学不仅解决了问题,还用了多种数学工具,展现了深厚的数学功底和敏锐的洞察力。"
另一位教授赞叹道:"确实如此。他巧妙运用了奇偶性、代数变换和数学归纳法,思路非常清晰。这种解题水平,已经达到了研究生的层次。"
在场的其他考生都惊呆了。他们面面相觑,眼中满是不可思议。有人小声嘀咕:"天哪,这也太厉害了吧?"
"这真的是高中生能想出来的解法吗?"另一个学生喃喃自语。
黄国栋脸色铁青,手指紧紧掐入掌心。他怎么也没想到,周群能以如此优雅的方式解决这个难题。
林诗雨看着周群,眼中满是崇拜和喜悦。她为周群感到骄傲,同时也暗暗给自己鼓劲,决心在接下来的考核中也要全力以赴。
周群谦逊地向教授们鞠了一躬,然后坐回座位。
教授们交头接耳,显然对周群的表现印象深刻。秦教授更是若有所思地看着周群,眼中闪过一丝期待的光芒。
就在这时,985的李教授站了起来,目光转向林诗雨:"林同学,下面请你来解答一道复变函数的题目"
"林同学,请你解决以下复变函数问题:求积分∫|z|=2(z2+ 1)/(z4- 1) dz的值。"
这个题目不算太难,关键就是要短时间计算出来,同时考到了一些大学的知识。
林诗雨深吸一口气,站起身来。
她的眼中没有紧张,反而是从容淡定。
"谢谢李教授,"她的声音清晰而自信,"我的解答思路如下:"
接着,林诗雨就很快详细地列出了细节,并得出了答案。
"将所有留数相加:1/4+ 1/4- 1/4- 1/4= 0
因此,根据留数定理,积分值为2πi 0= 0。"
"所以最终结果,就是0。"
林诗雨娓娓道来,她的解答不仅逻辑清晰,而且展现了对复变函数理论的深刻理解。教授们听得连连点头,眼中闪烁着赞许的光芒。
李教授激动地说:"太棒了!林同学不仅正确解决了问题,而且她的分析过程非常优雅。特别是对不同类型奇点的处理,展现了扎实的理论基础和灵活的思维。"
另一位教授补充道:"确实如此。她巧妙运用了留数定理,并且对二阶极点的处理尤为出色。这种解题水平,已经达到了本科高年级的程度。"
周围的考生再次惊呆了。有人小声议论:"天哪,林诗雨也这么厉害?"
"这两个人简直是怪物啊"另一个学生喃喃自语。
黄国栋的脸色更加难看了。
他自信地以为至少在复变函数这样的高深话题上能占些优势,没想到林诗雨也表现得如此出色。
周群看着林诗雨,为林诗雨感到由衷的高兴,同时也为两人默契的配合感到欣慰。
林诗雨微笑着向教授们鞠了一躬,然后优雅地坐回座位。她的脸上带着淡淡的红晕,既是因为紧张,也是因为兴奋。
教授们再次交头接耳,显然对林诗雨的表现同样印象深刻。
李教授更是赞许地点了点头,眼中闪过一丝欣赏的光芒。